KINESPORT KINESPORT


   



Un système « evidence-based » d’exercices de renforcement pour prévenir les blessures aux ischio jambiers



Un système « evidence-based » d’exercices de renforcement pour prévenir les blessures aux ischio jambiers

Introduction et donnée de la littérature


 
Avec en moyenne 17 jours d’arrêt d’entrainement et de compétition, et un coût moyen de 280 000 euros par blessure pour les clubs, les lésions musculaires des ischio jambiers (IJ), sont le fléau du football professionnel.
Alors que l’étiologie est multifactorielle, le renforcement des IJ est une composante incontournable des pratiques en matière de prévention, et occupe une place importante dans la littérature depuis des années. Malgré cela, les données longitudinales suggèrent que le taux de lésions n’a pas diminué depuis une décennie dans le football australien.
Le but de cet article est de fournir une structure « evidence-based » pour la prévention des lésions des IJ. Il sera fait le point sur la force des IJ comme facteur de risque, les preuves du rôle du renforcement des IJ, ainsi que le schéma d’activation des IJ dans différents exercices et leur malléabilité architecturale.
 

La force comme facteur de risque pour les blessures des IJ


 
Tout part d’un constat réalisé à partir d’une étude sur des lapins, montrant que des muscles faiblement activés absorbent moins d’énergie avant d’être mis en échec (rupture) par rapport à des muscles pleinement activés. Alors que tout cela semble intuitif, les preuves issues de différentes études prospectives sont variées.
 
Dans des études utilisant la dynamométrie isocinétique, un grand nombre d’auteurs semblent valider la diminution de force des IJ comme facteur de risque :

Un système « evidence-based » d’exercices de renforcement pour prévenir les blessures aux ischio jambiers
Certaines études n’ont néanmoins pas retrouvé d’association entre la force isocinétique des IJ et un risque de lésion (38,42,52)
 
Des mesures de terrain ont également retrouvé une corrélation entre force musculaire et risque de blessures. Par exemple, les sujets ayant un moins haut niveau de force mesurée lors d’un Nordic Hamstring auraient 4,3 fois plus de chance de se blesser la saison suivante que leurs homologues plus forts.
 

Le renforcement protège-t-il contre les lésions des IJ ?


 
Là encore la littérature est riche. Un grand nombre d’études au cours de la dernière décennie ont établi que les exercices de renforcement des IJ basés sur l’excentrique et la course externe réduisent le risque de blessures, tant que la compliance reste élevée (12-17). La plupart des protocoles dans ces études mettent en œuvre des exercices comme le Nordic Hamstring, le glider ou encore le YoYo flywheel. 

Un système « evidence-based » d’exercices de renforcement pour prévenir les blessures aux ischio jambiers

Impact de la sélection des exercices sur l’activation des IJ


 
De nombreuses études, utilisant l’EMG de surface ou l’IRM fonctionnelle, fournissent des preuves suggérant que les ischio jambiers ne sont pas activés de la même manière en fonction de l’exercice réalisé.
 
Les études EMG semblent révéler la tendance suivante (variabilité de résultats en fonction des études) :
 
  • Les mouvements orientés autour de la flexion du genou active préférentiellement le semi tendineux
  • Les mouvements orientés autour de l’extension de hanche active la longue portion du biceps fémoral (LPBF)et le semi membraneux.
 
La figure suivante représente le ratio d’activation du LPBF par rapport au semi tendineux en fonction de différents exercices, mesuré par EMGs. Un ratio supérieur à 1.0 indique un plus haut niveau d’activation du LPBF que du semi tendineux.

Un système « evidence-based » d’exercices de renforcement pour prévenir les blessures aux ischio jambiers
Une autre façon d’attester la différence d’activation des IJ en fonction des exercices est la mesure des dégâts musculaires causés après exercice. Une augmentation retardée du signal T2 (LPBF) est à mettre en parallèle comme conséquence d’un œdème suite aux dégâts musculaires.
Kubota (83) a donc montré qu’un exercice de Leg Curl excentrique résulte en un T2 élevé pour le ST, mais pas pour le LPBF ou le SM, 72 heures après l’exercice.
 

Adaptation architecturale, morphologique et performance suite à différents exercices.


 
Des preuves récentes (44) suggèrent que les joueurs de foot professionnels avec une plus petite longueur fasciculaire du LPBF (< 10,56 cm), sont 4,1 fois plus exposé à une blessure de ce même muscle que ceux ayant une longueur plus importante. La probabilité de réduction de blessures est de 21% par centimètre de longueur fasciculaire gagné.
 
Il a été montré que la longueur fasciculaire du LPBF peut être augmentée après avoir suivi un entrainement excentrique, mais pas concentrique. Par exemple, Potier (31) observe une augmentation de 34% de la longueur fasciculaire de LPBF après 8 semaines d’exercice de Leg Curl excentrique. D’autres études montrent au contraire une diminution de la longueur fasciculaire suite à un entrainement concentrique.

Un système « evidence-based » d’exercices de renforcement pour prévenir les blessures aux ischio jambiers
Il est aussi suggéré qu’une aponévrose plus large influence la localisation et l’ampleur d’une tension appliqué au muscle. Rehorn et Blemker (96) rapporte qu’une diminution de 80% de la largeur de l’aponévrose proximale du LPBF augmente de la tension de la jonction myotendineuse proximal de 60%. Or, 4 semaines de renforcement impliquant l’exercice de Nordic Hamstring, Leg Curl et l’extension de hanche modifie l’expression collagénique de l’endomésium des fibres musculaires.
 
Enfin, une amélioration de 2,4% dans les courses de plus de 30 mètres a été rapporté après 10 semaines d’entrainement comprenant le flywheel leg curl (54).
 

Implication dans la stratégie de prévention


 
Ainsi lors de nos prises en charge, on ne rééduquera pas une lésion des ischio jambiers de la même façon, en fonction du muscle et de la portion touchée. Il en va de même pour la prévention. Une prévention basée sur un seul type d’exercice protégera plus la partie des ischio jambiers étant plus activée pour cet exercice donné, mais moins les autres.
 
De même, l’architecture d’un muscle peut l’exposer à un risque de blessures plus élevé. Nous avons la capacité d’influencer plusieurs paramètres architecturaux et morphologiques du muscle. Cela doit se faire en corrélation avec la physiologie musculaire et l’implication fonctionnelle de la structure lors du geste sportif.
 
 

Article original


An Evidence-Based Framework for Strengthening Exercises to Prevent Hamstring Injury . Matthew N. Bourne • Ryan G. Timmins• David A. Opar • Tania Pizzari • Joshua D. Ruddy • Casey Sims • Morgan D. Williams • Anthony J. Shield

Référence 
1. OparDA,WilliamsMD,ShieldAJ.Hamstringstraininjuries:factors that lead to injury and re-injury. Sports Med. 2012;42(3):209–26. 
2. Ekstrand J, Walden M, Hagglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016;50(12):731–7. 
3. Ekstrand J, Lee JC, Healy JC. MRI findings and return to play in football: a prospective analysis of 255 hamstring injuries in the UEFA Elite Club Injury Study. Br J Sports Med. 2016;50(12):738–43. 
4. Hagglund M, Walden M, Magnusson H, et al. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):738–42. 
5. Ekstrand J. Keeping your top players on the pitch: the key to football medicine at a professional level. Br J Sports Med. 2013;47:723–24. 
6. Connell DA, Schneider-Kolsky ME, Hoving JL, et al. Longi- tudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. Am J Roentgenol. 2004;183(4):975–84.
7. Koulouris G, Connell DA, Brukner P, et al. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am J Sports Med. 2007;35(9):1500–6.
8. Verrall GM, Slavotinek JP, Barnes PG, et al. Diagnostic and prognostic value of clinical findings in 83 athletes with posterior thigh injury: comparison of clinical findings with magnetic resonance imaging documentation of hamstring muscle strain. Am J Sports Med. 2003;31(6):969–73.
9. McCall A, Dupont G, Ekstrand J. Injury prevention strategies, coach compliance and player adherence of 33 of the UEFA Elite Club Injury Study teams: a survey of teams’ head medical officers. Br J Sports Med. 2016;50(12):725–30.
10. Donaldson A, Cook J, Gabbe B, et al. Bridging the gap between content and context: establishing expert consensus on the con- tent of an exercise training program to prevent lower-limb injuries. Clin J Sport Med. 2015;25(3):221–9.
11. Brukner P, Nealon A, Morgan C, et al. Recurrent hamstring muscle injury: applying the limited evidence in the professional football setting with a seven-point programme. Br J Sports Med. 2014;48(11):929–38.
12. Arnason A, Andersen TE, Holme I, et al. Prevention of ham- string strains in elite soccer: an intervention study. Scand J Med Sci Sports. 2008;18(1):40–8.
13. Askling CM, Tengvar M, Tarassova O, et al. Acute hamstring injuries in Swedish elite sprinters and jumpers: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2014;48(7):532–9.
14. Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47(15):953–9.
15. Petersen J, Thorborg K, Nielsen MB, et al. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303.
16. Seagrave RA 3rd, Perez L, McQueeney S, et al. Preventive effects of eccentric training on acute hamstring muscle injury in professional baseball. Orthop J Sports Med. 2014;2(6):2325967114535351.
17. van der Horst N, Smits DW, Petersen J, et al. The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23.
18. Bahr R, Thorborg K, Ekstrand J. Evidence-based hamstring injury prevention is not adopted by the majority of Champions League or Norwegian Premier League football teams: the Nor- dic Hamstring survey. Br J Sports Med. 2015;49(22):1466–71.
19. Orchard J, Seward H. Epidemiology of injuries in the Australian Football League; seasons 1997–2000. Br J Sports Med. 2002;36(1):39–44.
20. Seward H, Orchard J, Hazard H, et al. Football injuries in Australia at the elite level. Med J Aust. 1993;159:298–301. 21. Opar DA, Drezner J, Shield A, et al. Acute hamstring strain
injury in track-and-field athletes: a 3-year observational study at the Penn Relay Carnival. Scand J Med Sci Sports. 2013;24(4):e254–9.
22. Brooks JHM, Fuller CW, Kemp SPT, et al. Epidemiology of injuries in English professional rugby union: part 1 match injuries. Br J Sports Med. 2005;39:757–66.
23. Bourne MN, Opar DA, Al Najjar A, et al. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51(13):1021–8.
24. Bourne M, Opar DA, Williams MD, et al. Muscle activation patterns in the Nordic hamstring exercise: impact of prior strain injury. Scand J Med Sci Sports. 2015;26(6):666–74. 
25. Mendiguchia J, Garrues MA, Cronin JB, et al. Nonuniform changes in MRI measurements of the thigh muscles after two hamstring strengthening exercises. J Strength Cond Res. 2013;27(3):574–81.
26. Mendiguchia J, Arcos AL, Garrues MA, et al. The use of MRI to evaluate posterior thigh muscle activity and damage during Nordic Hamstring exercise. J Strength Cond Res. 2013;27(12):3426–35. 
27. Ono T, Okuwaki T, Fukubayashi T. Differences in activation patterns of knee flexor muscles during concentric and eccentric exercises. Res Sports Med. 2010;18(3):188–98. 
28. Ono T, Higashihara A, Fukubayashi T. Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging. Res Sports Med. 2011;19(1):42–52.
29. Bourne MN, Timmins RG, Williams MD, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469–77. 
30. Timmins RG, Ruddy JD, Presland J, et al. Architectural changes of the biceps femoris after concentric or eccentric training. Med Sci Sports Exerc. 2015;48(3):499–508. 
31. Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol. 2009;105(6):939–44. 
32. Guex K, Millet GP. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med. 2013;43(12):1207–15. 
33. Malliaropoulos N, Mendiguchia J, Pehlivanidis H, et al. Ham- string exercises for track and field athletes: injury and exercise biomechanics, and possible implications for exercise selection and primary prevention. Br J Sports Med. 2012;46(12):846–51. 

34. Sherry MA, Johnston TS, Heiderscheit BC. Rehabilitation of acute hamstring strain injuries. Clin Sports Med. 2015;34(2):263–84. 

35. Heiderscheit BC, Sherry MA, Silder A, et al. Hamstring strain injuries: recommendations for diagnosis, rehabilitation and injury prevention. J Orthop Sports Phys Ther. 2010;40(2):67. 
36. Burkett LN. Causative factors in hamstring strains. Med Sci Sports Exerc. 1970;2(1):39–42. 
37. Garrett W, Safran M, Seaber AV, et al. Biomechanical com- parison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sports Med. 1987;15(6):448–54. 
38. Bennell K, Wajswelner H, Lew P, et al. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers. Br J Sports Med. 1998;32(4):309–14. 
39. Croisier JL, Forthomme B, Namurois MH, et al. Hamstring muscle strain recurrence and strength performance disorders. Am J Sports Med. 2002;30(2):199–203. 
40. Fousekis K, Tsepis E, Poulmedis P, et al. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: a prospective study of 100 professional players. Br J Sports Med. 2011;45(9):709–14. 
41. Sugiura Y, Saito T, Sakuraba K, et al. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. J Orthop Sports Phys Ther. 2008;38(8):457–64.
42. van Dyk N, Bahr R, Whiteley R, et al. Hamstring and quadriceps isokinetic strength deficits are weak risk factors for hamstring strain injuries: a 4-year cohort study. Am J Sports Med. 2016;44(7):1789–95.
43. Opar DA, Williams MD, Timmins RG, et al. Eccentric ham- string strength and hamstring injury risk in Australian foot- ballers. Med Sci Sports Exerc. 2014;47(4):857–65.
44. Timmins R, Bourne M, Shield A, et al. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2015;50(24):1524–35.
45. Bourne M, Opar DA, Williams M, et al. Eccentric knee-flexor strength and hamstring injury risk in rugby union: a prospective study. Am J Sports Med. 2015;43(11):2663–70.
46. Croisier JL, Ganteaume S, Binet J, et al. Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. Am J Sports Med. 2008;36(8):1469–75.
47. Gabbe BJ, Branson R, Bennell KL. A pilot randomised con- trolled trial of eccentric exercise to prevent hamstring injuries in community-level Australian Football. J Sci Med Sport. 2006;9(1–2):103–9.
48. Opar DA, Piatkowski T, Williams MD, et al. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2013;43(9):636–40.
49. Dauty M, Menu P, Fouasson-Chailloux A, et al. Prediction of hamstring injury in professional soccer players by isokinetic measurements. Muscles Ligaments Tendons J. 2016;6(1):116–23.
50. Cameron M, Adams R, Maher C. Motor control and strength as predictors of hamstring injury in elite players of Australian football. Phys Ther Spor. 2003;4(4):159–66.
51. Orchard J, Marsden J, Lord S, et al. Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers. Am J Sports Med. 1997;25(1):81–5.
52. Zvijac JE, Toriscelli TA, Merrick S, et al. Isokinetic concentric quadriceps and hamstring strength variables from the NFL Scouting Combine are not predictive of hamstring injury in first- year professional football players. Am J Sports Med. 2013;41(7):1511–8.
53. Goossens L, Witvrouw E, Vanden Bossche L, et al. Lower eccentric hamstring strength and single leg hop for distance predict hamstring injury in PETE students. Eur J Sport Sci. 2015;15(5):436–42.
54. Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244–50.
55. Mjolsnes R, Arnason A, Osthagen T, et al. A 10-week ran- domized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports. 2004;14(5):311–7.
56. Engebretsen AH, Myklebust G, Holme I, et al. Prevention of injuries among male soccer players: a prospective, random- ized intervention study targeting players with previous inju- ries or reduced function. Am J Sports Med. 2008;36(6):1052–60.
57. Tyler TF, Schmitt BM, Nicholas SJ, et al. Rehabilitation after hamstring strain injury emphasizing eccentric strengthening at long muscle lengths: results of long term follow-up. J Sport Rehabil. 2016;24:1–33.
58. Wakahara T, Miyamoto N, Sugisaki N, et al. Association between regional differences in muscle activation in one session of resistance exercise and in muscle hypertrophy after resistance training. Eur J Appl Physiol. 2012;112(4):1569–76.
59. Wakahara T, Fukutani A, Kawakami Y, et al. Nonuniform muscle hypertrophy: its relation to muscle activation in training session. Med Sci Sports Exerc. 2013;45(11):2158–65.
60. Zebis MK, Skotte J, Andersen CH, et al. Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris: an EMG study with rehabilitation implications. Br J Sports Med. 2013;47(18):1192–8.
61.Ditroilo M, De Vito G, Delahunt E. Kinematic and electromyographic analysis of the Nordic Hamstring Exercise.  Electromyogr Kinesiol. 2013;23(5):1111–8. 
62. Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol. 2004;96(4):1486–95. 
63. Veiersted KB. The reproducibility of test contractions for calibration of electromyographic measurements. Eur J Appl Physiol Occup Physiol. 1991;62(2):91–8. 
64. Adams GR, Duvoisin MR, Dudley GA. Magnetic resonance imaging and electromyography as indexes of muscle function. J Appl Physiol (1985). 1992;73(4):1578–83. 
65. Arendt-Nielsen L, Zwarts M. Measurement of muscle fiber conduction velocity in humans: techniques and applications. J Clin Neurophysiol. 1989;6(2):173–90. 
66. Yao W, Fuglevand RJ, Enoka RM. Motor-unit synchronization increases EMG amplitude and decreases force steadiness of 
simulated contractions. J Neurophysiol. 2000;83(1):441–52. 
67. Tsaklis P, Malliaropoulos N, Mendiguchia J, et al. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation. Open Access J Sports Med. 2015;6:209–17. 
68. Fleckenstein JL, Canby RC, Parkey RW, et al. Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers. AJR Am J Roentgenol. 1988;151(2):231–7. 
69. Fisher MJ, Meyer RA, Adams GR, et al. Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images. Invest Radiol. 1990;25(5):480–5. 
70. Cagnie B, Elliott JM, O’Leary S, et al. Muscle functional MRI as an imaging tool to evaluate muscle activity. J Orthop Sports Phys Ther. 2011;41(11):896–903. 
71. Fleckenstein JL, Haller RG, Lewis SF, et al. Absence of exercise-induced MRI enhancement of skeletal muscle in McArdle’s disease. J Appl Physiol (1985). 1991;71(3):961–9. 
72. Shellock FG, Fukunaga T, Mink JH, et al. Acute effects of exercise on MR imaging of skeletal muscle: concentric vs eccentric actions. AJR Am J Roentgenol. 1991;156(4):765–8. 
73. Fernandez-Gonzalo R, Tesch PA, Linnehan RM, et al. Indi- vidual muscle use in hamstring exercises by soccer players assessed using functional MRI. Int J Sports Med. 2016;37(7):559–64. 
74. Jenner G, Foley JM, Cooper TG, et al. Changes in magnetic resonance images of muscle depend on exercise intensity and duration, not work. J Appl Physiol (1985). 1994;76(5):2119–24. 
75. Patten C, Meyer RA, Fleckenstein JL. T2 mapping of muscle. Semin Musculoskelet Radiol. 2003;7(4):297–305. 
76. Delahunt E, McGroarty M, De Vito G, et al. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol. 2016;116(4):663–72. 
77. Jakobsen MD, Sundstrup E, Andersen CH, et al. Effectiveness of hamstring knee rehabilitation exercise performed in training machine vs. elastic resistance: electromyography evaluation study. Am J Phys Med Rehabil. 2014;93(4):320–7. 
78. McAllister MJ, Hammond KG, Schilling BK, et al. Muscle activation during various hamstring exercises. J Strength Cond Res. 2014;28(6):1573–80. 
79. Messer DM, Bourne MN, Williams MD, et al. Knee flexor muscle use in females during hip-extension and the Nordic hamstring exercise: an fMRI study. J Orthop Sports Phys Ther. (in Review). 
80. Bourne MN, Williams MD, Pizzari T, et al. A functional MRI exploration of hamstring activation during the supine bridge exercise. Int J Sports Med. 2017;38:1–6. doi:https://doi.org/10. 1055/s-0043-121150. 
81. Evans G, Haller RG, Wyrick PS, et al. Submaximal delayed- onset muscle soreness: correlations between MR imaging find- ings and clinical measures. Radiology. 1998;208(3):815–20.
82. Fleckenstein J, Weatherall P, Parkey R, et al. Sports-related muscle injuries: evaluation with MR imaging. Radiology. 1989;172(3):793–8.
83. Kubota J, Ono T, Megumi A, et al. Non-uniform changes in magnetic resonance measurements of the semitendinosus muscle following intensive eccentric exercise. Eur J Appl Physiol. 2007;101:713–20.
84. Timmins RG, Shield AJ, Williams MD, et al. Biceps femoris long head muscle architecture a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;43(11):2663–70.
85. Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57(2):209–21.
86. Timmins RG, Shield AJ, Williams MD, et al. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med. 2017;51(6):547–8.
87. Duhig S. Hamstring Strain Injury: effects of high-speed running, kicking and concentric versus eccentric strength training on injury risk and running recovery. 2017 [doctoral thesis]. Queensland University of Technology, QUT ePrints; 2017.
88. Presland J, Timmins RG, Williams MD, et al. The effect of high or low volume Nordic hamstring training on biceps femoris long head architectural adaptations. Scand J Med Sci Sports. (in Review).
89. de Breno AR, Alvares J, Marques VB, Vaz MA, et al. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2017. doi:10.1519/ JSC.0000000000001975.
90. Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with Nordic hamstring exercise. Scand J Med Sci Sports. 2017. doi:10.1111/sms.12877.
91. Lovell R, Knox M, Weston M, et al. Hamstring injury preven- tion in soccer: Before or after training? Scand J Med Sci Sports. Epub 24 May 2017.
92. Guex K, Degache F, Morisod C, et al. Hamstring architectural and functional adaptations following long vs. short muscle length eccentric training. Front Physiol. 2016;7:340.
93. Seymore KD, Domire ZJ, DeVita P, et al. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol. 2017;117(5):943–53.
94. Evangelidis PE, Massey GJ, Pain MT, et al. Biceps femoris aponeurosis size: a potential risk factor for strain injury? Med Sci Sports Exerc. 2015;47(7):1383–9.
95. Fiorentino NM, Epstein FH, Blemker SS. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech. 2012;45(4):647–52.
96. Rehorn MR, Blemker SS. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43(13):2574–81.
97. Koulouris G, Connell D. Evaluation of the hamstring muscle complex following acute injury. Skeletal Radiol. 2003;32(10):582–9.
98. Wakahara T, Ema R, Miyamoto N, et al. Increase in vastus lateralis aponeurosis width induced by resistance training: implications for a hypertrophic model of pennate muscle. Eur J Appl Physiol. 2015;115(2):309–16.
99. Abe T, Kumagai K, Bemben MG. Muscle aponeurosis area is greater in hypertrophied than in normal muscle. J Gen Intern Med. 2012;27:399.
100. Jakobsen JR, Mackey AL, Knudsen AB, et al. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training. Scand J Med Sci
Sports. 2016. doi:10.1111/sms.12794.
101. Silder A, Heiderscheit BC, Thelen DG, et al. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol. 2008;37(12):1101–9. 
102. Blazevich AJ, Coleman DR, Horne S, et al. Anatomical pre- dictors of maximum isometric and concentric knee extensor moment. Eur J Appl Physiol. 2009;105(6):869–78. 
103. Seymore KD. The effect of eccentric hamstring strength training on muscle function [masters thesis]. East Carolina University, ProQuest Dissertations Publishing; 2015:1590159. 
104. Iga J, Fruer CS, Deighan M, et al. ‘Nordic’ hamstrings exercise: engagement characteristics and training responses. Int J Sports Med. 2012;33(12):1000–4. 
105. Goode AP, Reiman MP, Harris L, et al. Eccentric training for prevention of hamstring injuries may depend on intervention compliance: a systematic review and meta-analysis. Br J Sports Med. 2015;49(6):349–56. 
106. Guex KJ, Lugrin V, Borloz S, et al. Influence on strength and flexibility of a swing phase-specific hamstring eccentric program in sprinters’ general preparation. J Strength Cond Res. 2016;30(2):525–32. 
107. Holcomb WR, Rubley MD, Lee HJ, et al. Effect of hamstring- emphasized resistance training on hamstring:quadriceps strength ratios. J Strength Cond Res. 2007;21(1):41–7.
108. Mendiguchia J, Martinez-Ruiz E, Morin JB, et al. Effects of hamstring-emphasized neuromuscular training on strength and sprinting mechanics in football players. Scand J Med Sci Sports. 2015;25(6):e621–9.
109. Brockett C, Morgan D, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc. 2001;33(5):783–90.
110. Clark R, Bryant A, Culgan J-P, et al. The effects of eccentric hamstring strength training on dynamic jumping performance and isokinetic strength parameters: a pilot study on the impli- cations for the prevention of hamstring injuries. Phys Ther Sport. 2005;6(2):67–73.
111. Brughelli M, Mendiguchia J, Nosaka K, et al. Effects of eccentric exercise on optimum length of the knee flexors and extensors during the preseason in professional soccer players. Phys Ther Sport. 2010;11(2):50–5.
112. Kilgallon M, Donnelly AE, Shafat A. Progressive resistance training temporarily alters hamstring torque-angle relationship. Scand J Med Sci Sports. 2007;17(1):18–24.