KINESPORT KINESPORT


   



Revue de l’évidence scientifique de la mise en place du travail neuromusculaire de la hanche pour la correction du valgus de genou




Introduction
Les exercices de renforcement neuromusculaire de la hanche ont prit une grande importance à la vue de son impact sur la prévention des pathologies du membre inférieur. Principalement pour la rupture du ligament croisé antérieur (LCA) et le syndrome fémoro-patellaire (SFP) pour lesquelles cette intervention permettra une amélioration réelle du contrôle neuromusculaire et du renforcement musculaire. 1 Le valgus dynamique du membre inférieur se définit par une association de mouvements et rotations incluant l’adduction et rotation interne de hanche, abduction du genou, rotation externe et translation antérieure du tibia, et éversion de la cheville. 3
C’est un facteur de risque pour une future lésion du LCA ou d’un SFP chez les jeunes athlètes féminines principalement, d’après les dernières études. 2 4 5

Si l’on analyse les différences entre les athlètes féminines et masculins voici ce qu’il en est :
  • Chez les femmes, on retrouve un valgus de genou beaucoup plus prononcé notamment lors des réceptions de saut et des mouvements en pivot. 6–18 Tandis que chez l’homme, de part son développement pendant la croissance et l’adolescence, on retrouve une plus grande force musculaire au niveau des hanches. 23
 
  • On se rend compte de l’importance des stratégies de contrôle neuromusculaire lors de la réception de sauts comme un facteur de risque de blessures du membre inférieur ou du LCA chez les athlètes féminines. 29,30
Lors des sauts verticaux, les femmes sollicitent beaucoup plus leur quadriceps tandis que les hommes sollicitent une plus grande flexion, puis extension de hanche.
C’est pour cela, que lors de l’entrainement neuromusculaire, on agit sur la cinétique et la cinématique de hanche. 35 Lephart et al35 ont démontré que lors de la plyométrie, on retrouve une plus grande flexion de hanche lors du contact initial, ainsi qu’une augmentation du pic de force lors de l’extension. Ces auteurs suggèrent donc que ces modifications au niveau de la hanche entraineraient une augmentation de la force musculaire des ischio-jambiers, protégeant ainsi le LCA. Le positionnement de la hanche jouerait un rôle important sur l’efficacité mécanique des ischio-jambiers par rapport au quadriceps. 36
La hanche joue donc un rôle central lors du valgus dynamique du membre inférieur. Le but de cette étude fut de mettre en place un protocole de correction ciblé sur la hanche, et basé sur l’activation musculaire de la hanche, renforcement musculaire,  à partir des données biomécaniques, afin d’établir un protocole clinique pratique.
Anatomie fonctionnelle
La musculature postéro-latérale de la hanche permet la stabilité proximale du membre inférieur et du bassin, ainsi que le contrôle de la rotation de hanche. 37–39,41,43,45,46
Le premier abducteur de hanche est le moyen fessier qui possède des fibres antérieures et moyennes (verticales), mais également postérieures (horizontales), et se contractent de manière plus ou moins simultanément suivant l’effort à réaliser sub-maximal (marche) ou plus intense (descente des escaliers). 42,43 Il est aidé par le petit fessier et le piriforme.
Le grand fessier permet quant à lui, l’extension de hanche associée à la rotation latérale. 37

Exercices d’activation musculaire à partir de la hanche
L’activation musculaire du moyen fessier, grand fessier a été mesurée par EMG en analysant le pourcentage de contraction volontaire isométrique maximale (%CVIM). On suggère que pour atteindre une activation suffisante permettant le renforcement musculaire, le pourcentage doit être de minimum entre 40%-60% CVIM. 50 
 

Lors des exercices en décharge, la position du membre inférieur, et l’angulation ont une influence directe sur l’activation des muscles fessiers. Par exemple, pour l’exercice 2A, la rotation de hanche agira sur l’activation du moyen fessier (MF).64
Il fut démontré que lors de cet exercice, l’activation du MF était augmentée de 16% lors de la rotation interne de hanche plutôt qu’en position neutre.
Quant au grand fessier (GF), son activation sera influencée par le positionnement de la hanche dans le plan  sagittal.65 On retrouvera une activation améliorée de 12%–14% du GF à 30–60 degrés de flexion de hanche.

La position du tronc lors des exercices en charge et lors des exercices fonctionnels semble influencer les sollicitations musculaires au niveau des hanches. Il semblerait que la flexion du tronc entrainerait une activation des muscles de la hanche pendant le saut et la course.67,68

Seulement une étude a été réalisée sur l’influence de la position du tronc dans le plan sagittal et l’activation du grand fessier lors d’une fente avant. 69 Les auteurs en déduisent une activation améliorée de 6% du GF pendant une fente avant avec le tronc en flexion.
Données biomécaniques et force musculaire après protocole d’intervention sur la hanche

Comme on peut voir dans le tableau ci-dessus, la mise en place de programmes a permit un gain de force musculaire de la hanche : 70–80
  • Rotation externe : 6-56%
  • ABD : 7-42%
  • Extension : 8%
Les gains de force se sont révélés significatifs surtouts lors des contractions isométriques, même si l’on sait que la force excentrique est sûrement la plus importante afin de contrôler le valgus dynamique du genou lors des sauts ou réceptions.
Mais le plus important encore, est que les gains de force ont entrainé des améliorations biomécaniques de la hanche et du genou lors de l’activité sportive (tableau 1). 



Les études effectuées démontrent que l’entrainement neuromusculaire de la hanche est un élément important à prendre en compte pour des pathologies de genou comme le LCA et le SFP. En ciblant l’activation musculaire de la hanche et le renforcement associé, on agira en prévention et pour la correction du valgus dynamique du membre inférieur, réduisant ainsi le risque de LCA et SFP. Les futures recherches devront étudier le lien entre les données biomécaniques des différents sports et la mise en place de protocoles neuromusculaires ciblés sur la hanche.
BIBLIOGRAPHIE
 
 
1. Powers CM. The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther. 2010;40(2): 42–51.
  1. Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501.
  2. Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299–311.
  3. PaternoMV,SchmittLC,FordKR,etal.Biomechanicalmeasuresduring landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–1978.
  4. Myer GD, Ford KR, Di Stasi SL, Barber Foss KD, Micheli LJ, Hewett TE. High knee abduction moments are common risk factors for patellofemo- ral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Br J Sports Med. 2015;49(2):118–122.
  5. Ford KR, Myer GD, Hewett TE. Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc. 2003;35(10):1745–1750.
  6. Ford KR, Myer GD, Toms HE, Hewett TE. Gender differences in the kinematics of unanticipated cutting in young athletes. Med Sci Sports Exerc. 2005;37(1):124–129.
  7. Ford KR, Myer GD, Smith RL, Vianello RM, Seiwert SL, Hewett TE. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin Biomech. 2006;21(1):33–40.
9. Ford KR, Shapiro R, Myer GD, van den Bogert AJ, Hewett TE. Longitudinal sex differences during landing in knee abduction in young athletes. Med Sci Sports Exerc. 2010;42(10):1923–1931.
10. MalinzakRA,ColbySM,KirkendallDT,YuB,GarrettWE.Acompari- son of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech. 2001;16(5):438–445.
11. Hewett TE, Myer GD, Ford KR. Decrease in neuromuscular control about the knee with maturation in female athletes. J Bone Joint Surg Am. 2004;86-A(8):1601–1608.
12. Chappell JD, Yu B, Kirkendall DT, Garrett WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30(2):261–267.
13. McLean SG, Huang X, Su A, van den Bogert AJ. Sagittal plane biome- chanics cannot injure the ACL during sidestep cutting. Clin Biomech. 2004;19:828–838.
14. Kernozek TW, Torry MR, Van Hoof H, Cowley H, Tanner S. Gender differences in frontal and sagittal plane biomechanics during drop landings. Med Sci Sports Exerc. 2005;37(6):1003–1012.
15. Zeller BL, McCrory JL, Kibler WB, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31(3):449–456.
16. Pappas E, Hagins M, Sheikhzadeh A, Nordin M, Rose D. Biomechanical differences between unilateral and bilateral landings from a jump: gender differences. Clin J Sport Med. 2007;17(4):263–268.
17. Hewett TE, Ford KR, Myer GD, Wanstrath K, Scheper M. Gender dif- ferences in hip adduction motion and torque during a single leg agility maneuver. J Orthop Res. 2006;24(3):416–421.
18. Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765–773.
19. Carson DW, Ford KR. Sex differences in knee abduction during landing: a systematic review. Sports Health. 2011;3(4):373–382.
20. Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):1002–1012.
21. Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359–367.
  1. Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–578.
  2. Brent J, Myer GD, Ford KR, Paterno M, Hewett T. The effect of sex and age on isokinetic hip abduction torques. J Sport Rehabil. 2013; 22(1):41–46.
  3. Ford KR, Taylor-Haas JA, Genthe K, Hugentobler J. Relationship between hip strength and trunk motion in college cross-country runners. Med Sci Sports Exerc. 2013;45(6):1125–1130.
  4. Taylor-Haas JA, Hugentobler JA, DiCesare CA, et al. Reduced hip strength is associated with increased hip motion during running in young adult and adolescent male long-distance runners. Int J Sports Phys Ther. 2014;9(4):456–467.
  5. Prins MR, van der Wurff P. Females with patellofemoral pain syn- drome have weak hip muscles: a systematic review. Aust J Physiother. 2009;55(1):9–15.
  6. Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):12–19.
  7. Willson JD, Davis IS. Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clin Biomech. 2008;23(2):203–211.
  8. Ireland ML. The female ACL: why is it more prone to injury? Orthop Clin North Am. 2002;33(4):637–651.
  9. Knapik JJ, Bauman CL, Jones BH, Harris JM, Vaughan L. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am J Sports Med. 1991;19(1):76–81.
  10. Ford KR, Myer GD, Hewett TE. Longitudinal effects of maturation on lower extremity joint stiffness in adolescent athletes. Am J Sports Med. 2010;38(9):1829–1837.
  11. Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech. 2003;18(7):662–669.
  12. DeVita P, Hortobagyi T, Barrier J. Gait biomechanics are not normal after anterior cruciate ligament reconstruction and accelerated rehabilitation. Med Sci Sports Exerc. 1998;30(10):1481–1488.
  13. Souza RB, Arya S, Pollard CD, Salem G, Kulig K. Patellar tendinopa- thy alters the distribution of lower extremity net joint moments during hopping. J Appl Biomech. 2010;26(3):249–255.
  14. Lephart SM, Abt JP, Ferris CM, et al. Neuromuscular and biome- chanical characteristic changes in high school athletes: a plyometric versus basic resistance program. Br J Sports Med. 2005;39(12): 932–938.
  15. Shultz SJ, Beynnon BD, Schmitz RJ. Sex differences in coupled knee motions during the transition from non-weight-bearing to weight- bearing. J Orthop Res. 2009;27(6):717–723.
  16. Moore KL. Clinically Oriented Anatomy. Baltimore, MD, USA: Williams and Wilkins; 1992.
  17. Kumagai M, Naoto S, Higuchi F. Functional evaluation of hip abductor muscles with use of magnetic resonance imaging. J Orthop Res. 1997;15: 888–893.
  18. Inman VT. Functional aspects of the abuctor muscles of the hip. J Bone Joint Surg Am. 1947;29(3):607–619.
  19. Pfirrmann CW, Chung CB, Theumann NH, Trudell DJ, Resnick D. Greater trochanter of the hip: attachment of the abductor mechanism and a complex of three bursae – MR imaging and MR bursography in cadavers and MR imaging in asymptomatic volunteers. Radiology. 2001;221(2): 469–477.
  20. Gottschalk F, Kourosh S, Leveau B. The functional anatomy of ten- sor fasciae latae and gluteus medius and minimus. J Anat. 1989;166: 179–189.
  21. Soderberg GL, Dostal WF. Electromyographic study of three parts of the gluteus medius muscle during functional activities. Phys Ther. 1978;58(6):691–696.
  22. Lyons K, Perry J, Gronley JK, Barnes L, Antonelli D. Timing and relative intensity of hip extensor and abductor muscle action during level and stair ambulation. An EMG study. Phys Ther. 1983;63(10): 1597–1605.
44. Kendall FP, McCreary EK, Provance PG. Muscles Testing and Function. 4th ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 1993.
45. Earl JE. Gluteus medius activity during 3 variations of isometric single- leg stance. J Sport Rehabil. 2004;13:1–11.
46. Schmitz RJ, Riemann BL, Thompson T. Gluteus medius activity during isometric closed-chain hip rotation. J Sport Rehabil. 2002;11: 179–188.
47. Neumann DA. Biomechanical analysis of selected principles of hip joint protection. Arthritis Care Res. 1989;2(4):146–155.
48. Neumann DA, Cook TM, Sholty RL, Sobush DC. An electromyograpic analysis of hip abductor muscle activity when subjects are carrying loads in one of both hands. Phys Ther. 1992;72(3):207–217.
49. Anderson FC, Pandy MG. Individual muscle contributions to support in normal walking. Gait Posture. 2003;17(2):159–169.
50. Andersen LL, Magnusson SP, Nielsen M, Haleem J, Poulsen K, Aagaard P. Neuromuscular activation in conventional therapeutic exercises and heavy resistance exercises: implications for rehabilitation. Phys Ther. 2006;86(5):683–697.
51. DiStefano LJ, Blackburn JT, Marshall SW, Padua DA. Gluteal muscle activation during common therapeutic exercises. J Orthop Sports Phys Ther. 2009;39(7):532–540.
52. Bolgla LA, Uhl TL. Electromyographic analysis of hip rehabilitation exercises in a group of healthy subjects. J Orthop Sports Phys Ther. 2005;35(8):487–494.
53. Boren K, Conrey C, Le Coguic J, Paprocki L, Voight M, Robinson TK. Electromyographic analysis of gluteus medius and gluteus maximus during rehabilitation exercises. Int J Sports Phys Ther. 2011;6(3): 206–223.
54. Selkowitz DM, Beneck GJ, Powers CM. Which exercises target the gluteal muscles while minimizing activation of the tensor fascia lata? Electromyographic assessment using fine-wire electrodes. J Orthop Sports Phys Ther. 2013;43(2):54–64.
55. Ekstrom RA, Donatelli RA, Carp KC. Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J Orthop Sports Phys Ther. 2007;37(12):754–762.
56. Ayotte NW, Stetts DM, Keenan G, Greenway EH. Electromyographical analysis of selected lower extremity muscles during 5 unilateral weight- bearing exercises. J Orthop Sports Phys Ther. 2007;37(2):48–55.
57. Lubahn AJ, Kernozek TW, Tyson TL, Merkitch KW, Reutemann P, Chestnut JM. Hip muscle activation and knee frontal plane motion during weight-bearing therapeutic exercises. Int J Sports Phys Ther. 2011;6(2):92–103.
58. Chmielewski TL, Myer GD, Kauffman D, Tillman SM. Plyometric exercise in the rehabilitation of athletes: physiological responses and clinical application. J Orthop Sports Phys Ther. 2006;36(5):308–319.
59. Myer GD, Ford KR, Hewett TE. Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J Athl Train. 2004;39(4):352–364.
60. Myer GD, Paterno MV, Ford KR, Hewett TE. Neuromuscular train- ing techniques to target deficits before return to sport after anterior cruciate ligament reconstruction. J Strength Cond Res. 2008; 22(3):987–1014.
61. Myer GD, Ford KR, Brent JL, Hewett TE. An integrated approach to change the outcome Part II: Targeted neuromuscular training techniques to reduce identified ACL injury risk factors. J Strength Cond Res. 2012; 26(8):2272–2292.
62. Struminger AH, Lewek MD, Goto S, Hibberd E, Blackburn JT. Comparison of gluteal and hamstring activation during five commonly used plyometric exercises. Clin Biomech. 2013;28(7):783–789.
63. Hanson AM, Padua DA, Troy Blackburn J, Prentice WE, Hirth CJ. Muscle activation during side-step cutting maneuvers in male and female soccer athletes. J Athl Train. 2008;43(2):133–143.
64. Lee JH, Cynn HS, Kwon OY, et al. Different hip rotations influence hip abductor muscles activity during isometric side-lying hip abduction in subjects with gluteus medius weakness. J Electromyogr Kinesiol. 2014;24(2):318–324.
  1. Worrell TW, Karst G, Adamczyk D, et al. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles. J Orthop Sports Phys Ther. 2001;31(12):730–740.
  2. Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther. 2003;33(11):639–646.
  3. Kopper B, Ureczky D, Tihanyi J. Trunk position influences joint activation pattern and physical performance during vertical jumping. Acta Physiol Hung. 2012;99(2):194–205.
  4. Teng HL, Powers CM. Influence of trunk posture on lower extremity ener- getics during running. Med Sci Sports Exerc. 2015;47(3):625–630.
  5. Farrokhi S, Pollard CD, Souza RB, Chen YJ, Reischl S, Powers CM. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. J Orthop Sports Phys Ther. 2008;38(7):403–409.
  6. Earl JE, Hoch AZ. A proximal strengthening program improves pain, function, and biomechanics in women with patellofemoral pain syndrome. Am J Sports Med. 2011;39(1):154–163.
  7. Stearns KM, Powers CM. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am J Sports Med. 2014;42(3):602–609.
  8. Ismail MM, Gamaleldein MH, Hassa KA. Closed kinetic chain exercises with or without additional hip strengthening exercises in management of patellofemoral pain syndrome: a randomized controlled trial. Eur J Phys Rehabil Med. 2013;49(5):687–698.
  9. Garrison JC, Bothwell J, Cohen K, Conway J. Effects of hip strengthening on early outcomes following anterior cruciate ligament reconstruction. Int J Sports Phys Ther. 2014;9(2):157–167.
  10. Baldon Rde M, Serrao FV, Scattone Silva R, Piva SR. Effects of functional stabilization training on pain, function, and lower extremity biomechanics in women with patellofemoral pain: a randomized clinical trial. J Orthop Sports Phys Ther. 2014;44(4):A240–A248.
  11. Khayambashi K, Mohammadkhani Z, Ghaznavi K, Lyle MA, Powers CM. The effects of isolated hip abductor and external rotator muscle strengthening on pain, health status, and hip strength in females with patellofemoral pain: a randomized controlled trial. J Orthop Sports Phys Ther. 2012;42(1):22–29.
  12. McCurdy K, Walker J, Saxe J, Woods J. The effect of short-term resis- tance training on hip and knee kinematics during vertical drop jumps. J Strength Cond Res. 2012;26(5):1257–1264.
  13. Myer GD, Brent JL, Ford KR, Hewett TE. A pilot study to determine the effect of trunk and hip-focused neuromuscular training on hip and knee isokinetic strength. Br J Sports Med. 2008;42(7):614–619.
  14. Dolak KL, Silkman C, Medina McKeon J, Hosey RG, Lattermann C, Uhl TL. Hip strengthening prior to functional exercises reduces pain sooner than quadriceps strengthening in females with patellofemoral pain syndrome: a randomized clinical trial. J Orthop Sports Phys Ther. 2011;41(8):560–570.
  15. Nakagawa TH, Muniz TB, Baldon Rde M, Dias Maciel C, de Menezes Reiff RB, Serrao FV. The effect of additional strengthen- ing of hip abductor and lateral rotator muscles in patellofemoral pain syndrome: a randomized controlled pilot study. Clin Rehabil. 2008; 22(12):1051–1060.
  16. Willy RW, Davis IS. The effect of a hip strengthening program on mechanics during running and during a single leg squat. J Orthop Sports Phys Ther. 2011;41(9):625–632.
  17. Herman DC, Weinhold PS, Guskiewicz KM, Garrett WE, Yu B, Padua DA. The effects of strength training on the lower extremity biomechanics of female recreational athletes during a stop-jump task. Am J Sports Med. 2008;36(4):733–740.
  18. Willy RW, Scholz JP, Davis IS. Mirror gait retraining for the treatment of patellofemoral pain in female runners. Clin Biomech. 2012;27(10): 1045–1051.
302
83. Noehren B, Scholz J, Davis I. The effect of real-time gait retraining on hip kinematics, pain and function in subjects with patellofemoral pain syndrome. Br J Sports Med. 2011;45(9):691–696.
84. Benjaminse A, Gokeler A, Dowling AV, et al. Optimization of the anterior cruciate ligament injury prevention paradigm: novel feedback techniques to enhance motor learning and reduce injury risk. J Orthop Sports Phys Ther. 2015;45(3):170–182.
85. Ford KR, DiCesare CA, Myer GD, Hewett TE. Real-time biofeedback to target risk of anterior cruciate ligament injury: a technical report for injury prevention and rehabilitation. J Sport Rehabil. 2015; Techni- cal Notes. pii: 2013-0138.
86. Gokeler A, Benjaminse A, Hewett TE, et al. Feedback techniques to target functional deficits following anterior cruciate ligament recon- struction: implications for motor control and reduction of second injury risk. Sports Med. 2013;43(11):1065–1074.
87. W o u t e r s I , A l m o n r o e d e r T , D e j a r l a i s B , L a a c k A , W i l l s o n J D , K e r n o z e k T W. Effects of a movement training program on hip and knee joint frontal plane running mechanics. Int J Sports Phys Ther. 2012; 7(6):637–646.
88. Freeman S, Mascia A, McGill S. Arthrogenic neuromusculature inhibition: a foundational investigation of existence in the hip joint. Clin Biomech. 2013;28(2):171–177.
89. Nguyen AD, Shultz SJ, Schmitz RJ. Landing biomechanics in partici- pants with different static lower extremity alignment profiles. J Athl Train. 2015;50(5):498–507.
90. Nguyen AD, Shultz SJ, Schmitz RJ, Luecht RM, Perrin DH. A pre- liminary multifactorial approach describing the relationships among lower extremity alignment, hip muscle activation, and lower extremity joint excursion. J Athl Train. 2011;46(3):246–256.
91. Verrelst R, De Clercq D, Willems TM, Victor J, Witvrouw E. Contribution of a muscle fatigue protocol to a dynamic stability screening test for exertional medial tibial pain. Am J Sports Med. 2014;42(5): 1219–1225.
92. Willson JD, Petrowitz I, Butler RJ, Kernozek TW. Male and female gluteal muscle activity and lower extremity kinematics during running. Clin Biomech. 2012;27(10):1052–1057.
93. Patrek MF, Kernozek TW, Willson JD, Wright GA, Doberstein ST. Hip-abductor fatigue and single-leg landing mechanics in women athletes. J Athl Train. 2011;46(1):31–42.
94. Kernozek TW, Torry MR, Iwasaki M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med. 2008;36(3):554–565.
95. Quatman-Yates CC, Myer GD, Ford KR, Hewett TE. A longitudinal evaluation of maturational effects on lower extremity strength in female adolescent athletes. Pediatr Phys Ther. 2013;25(3):271–276.
96. Gardinier ES, Manal K, Buchanan TS, Snyder-Mackler L. Gait and neuromuscular asymmetries after acute anterior cruciate ligament rupture. Med Sci Sports Exerc. 2012;44(8):1490–1496.
97. Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med. 2013;41(7):1549–1558.
98. Lentz TA, Zeppieri G Jr, George SZ, et al. Comparison of physical impairment, functional, and psychosocial measures based on fear of reinjury/lack of confidence and return-to-sport status after ACL reconstruction. Am J Sports Med. 2015;43(2):345–353.
99. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):1567–1573.
100. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med. 2012;22(2):116–121.